STANDARDS ASSOCIATION

LVDC STANDARDISATION

PANEL DISCUSSION

5 March 2020

Rajesh Kunnath, RadioStudio

IEEE

DC in the home

P2030.10.1 Working Group

Standard for Electricity Access

Standard for Electricity Access Requirements with Safety Extra Low Voltage (SELV) DC for Tier II and Tier III of Energy Sector Management Assistance Program (ESMAP) Multi-tier Framework for Household Electricity Supply

- Distribution Standard
- Simple
- Easy to adopt
- Safe, even for first time users of electricity
- Sustainable
- Scalable

Objective and Scope

- Spans power delivery from 50W to 800W
- Standard should not limit source and storage capacity
- Should be scalable so that a small system at the outset can be scaled later
- Should follow a similar approach as AC to the extent possible
- Addresses concerns regarding sustainability, maintenance and repair, availability of spares by default

TIER 0 TIER 1 TIER 2 TIER 3 TIER 4 TIER 5 Power Min 3 W Min 50 W Min 200 W Min 800 W Min 2 kW capacity ratings²⁸ (in W or daily Min 12 Wh Min 200 Wh Min 1.0 kWh Min 3.4 kWh Min 8.2 kWh Wh) 1. Peak Electrical Capacity lighting, air Lighting of circulation. 0R 1.000 lmhr/ television, Services and phone day charging are possible Hours Min 4 hrs Min 4 hrs Min 8 hrs Min 16 hrs Min 23 hrs per dav 2. Availability ATTRIBUTES Hours (Duration) Min 1 hr Min 2 hrs Min 3 hrs Min 4 hrs Min 4 hrs per evenina Max 3 Max 14 disruptions 3. Reliability per week of per week total duration <2 hrs Voltage problems do not affect 4. Quality the use of desired appliances 5. Afford-Cost of a standard consumption package of 365 kWh/year < 5% of household income ability Bill is paid to the utility, pre-6. Legality paid card seller, or authorized representative Absence of past accidents and 7. Health & perception of high risk in the Safety future

Architecture

IEEE 4

Salient Provisions

Voltage

- 48V Nominal
 - Voltage Range 36-52V (Harmonised with ISO 21780 and P2030.10)
 - 52-58V Temporary Over Voltage Condition

Current

- Current per circuit 5A (so that arc can extinguish)
- Multiple circuits can be used in a distribution (like AC)

Polarity to be observed

Overcurrent protection only for sources and batteries. Load side not typically required

Earthing - No requirement for earthing conductor. Both positive and negative shall be isolated from earth

Projected Benefits

- Access to Finance
- Easy Electrification, Electricity for all
- Scalable
- Inherently safe in most environments
- Sustainable
 - Repair and Reuse
- Custom business models, generate local entrepreneurship
- Leverage products from large-scale markets like batteries from automotive, wires from AC eco-system, etc...

Going Beyond

DC appliances inherently energy efficient than their AC counterparts

- LED Lights
- BLDC Fans
- Induction cooktops
- Refrigerator
- Chillers
-

But in order to perform well, management is needed - source, load and storage. For best utilisation, some kind of an autonomous demand response would be needed or user-orchestrated demand response

Local computing capability that can payback itself

Energy Efficiency and Demand Response

P2030.10.2

- IoT extension of P2030.10.1
- Energy efficiency
- Demand Response
- Creation of a nano-grid (??)

Uses three computing elements

- Small, low-cost local computer
- Consumer's mobile phone
- Cloud

THANK YOU

