
Fault Current Control for DC Microgrid 
Protection

Sijo Augustine, Postdoctoral Research Fellow

New Mexico State University, USA Klipsch School of Electrical and Computer Engineering



Contents

 DC Microgrid- Overview

 Type of Faults, Protection Methods & Challenges

 System Under Consideration

 Proposed Algorithm

 Simulation Results

 Conclusions



DC Microgrid - Overview

 DC grid 

 AC grid
interface & 

control room 

 Variety of sizes, technologies, and configurations 
 Single bus, multi-bus, radial, meshed, zonal etc.

 Energy efficiency 
 Reduced AC-DC conversion, generation sources 

closer to loads.

 Economic benefits

 Simpler than AC
 Reactive power, skin effect, etc. not an issue in DC 

power. 



DC Microgrid Components
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DC Microgrid Operating/Control Principles
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Performance Parameters 
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Types of Fault: Solar-PV based DC microgrid

DC Microgrid Fault

Short Circuit Fault Arc Fault

Line-Line Fault Line-Ground Fault Series Arc Fault Parallel Arc Fault

 Low Impedance Faults
 High Impedance Faults



Fault Locations
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Standardization



Challenges of DC Protection

• No zero crossing

• Circuit breaker arcing 

• Characterization of faults from disturbances/transients.

• Faster speed requirements 

• Communication protocols

• Lack of guidelines and standards (IEEE P2030.10, IEEE 1547.4, 
IEC SEG4, IEEE PES IGCC DC@Home, NEC, REbusTM, EMerge
Alliance, etc.)



Protection Methods & Schemes
DC Microgrid Protection Methods

Unit Protection Non-Unit Protection Single Ended Double Ended

Follow a threshold 
value to detect the 
various faults

Local measurement 
of voltage and 
current

 Magnitude of voltage

 Magnitude of current

 Impedance estimation method

 Power probe unit method

 Virtual Impedance method

 Differential current-based fault detection

 Transient-based fault protection

 Voltage derivative supervised current derivative protection

 Advanced fault detection techniques for PV arc, ground, and Line-Line faults

Protect specific 
zones 

Sensing devises at 
both ends &  
communication 
channels 

DC Microgrid Fault Detection Schemes



DC Protection Devices
DC Microgrid Protection Devices

Fuse

 Arc Fault 
Circuit 
Interrupter 
(AFI)

 Combination 
Arc-Fault 
Circuit  
Interrupter 
(CAFI) 

DC Circuit Breaker Protective Relay Solid State CB Hybrid CB

 Molded Case

 Vacuum CBs

 Hybrid-solid/
vacuum

 DC power 
relays

 Digital relays

 Gate turn off 
thyristor (GTO) 

 Emitter turn-
off (ETO) 
thyristor

 Insulated gate 
bipolar 
transistor 
(IGBT)

 Insulated gate 
commutated 
thyristor (IGCT) 

 Coupled 
inductor SSCB

 Thyristor-
based DC 
hybrid CB 

Arc Fault 
Interrupter

 Conventional

 High Switching 
speed

 Fully 
controllable

 High voltage 
blocking & 
current 
carrying 
capability

 Low on-state 
conduction 
loss

 Arcing is small



System Under Consideration
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• A standalone 4-bus DC microgrid 
system.

• Each bus consists of two parallel 
connected solar-PV boost 
converters, one bidirectional 
converter for energy  storage, and 
DC loads

• L-L (F 1 & F 2 ) or L-G (F 3 & F 4 ) fault 
created at converter-1 terminal and 
Feeder.



BUS#1- Converter Cable Fault (F1)
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• Converter-1’s contribution to the fault 
current can be divided into two 
components:
(i) The fault current component from        

the DC power source (PV), and
(ii) The current from the DC bus 

capacitor.

i f = i f,pv1 + i f,pv2 + i f,B1 + i f,Bus#2 + i f,Bus#4



Proposed Droop Algorithm -Objectives

 Power sharing

 Maximum power point tracking 
(MPPT)

 Energy management

 Protection:  Control the reference 
voltage of each converter by using an 
adaptive virtual Resistance, called 
Rdroop.

Sijo Augustine, Mahesh K. Mishra, and N. 
Lakshminarasamma,, A Unified Control Scheme
for a Standalone Solar - PV Based LVDC Microgrid 
System with HESS" in IEEE Journal of
Emerging and Selected Topics in Power Electronics. 
doi: 10.1109/JESTPE.2019.2916421

Sijo Augustine, M. J. Reno, S. M. Brahma and O. 
Lavrova, "Fault Current Control and Protection in a 
Standalone DC Microgrid Using Adaptive Droop and 
Current Derivative," in IEEE Journal of Emerging and 
Selected Topics in Power Electronics, 
doi: 10.1109/JESTPE.2020.2984609.



Current Derivative + Adaptive Droop
Low impedance faults (Zone#3)
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Control Algorithm
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Low impedance Fault:

• Conv-1: Converter to bus#1, line-line
cable fault is activated at 0.02s

• Conv-2: Normal operation, no fault (b)

(c)

(d)

(a)

(e) Time(s)

• di/dt of the converter-1 is high -
Fault is detected.

• Trip signal is sent to isolate the
converter when the current reaches
10A threshold.



Droop Control:
• 10A is selected as the source current 

threshold instead of converter-1 
output current threshold.

• Bottom Figure:  The total time 
taken to clear the fault is 
approximately 265µs.

(b)

(a)

(b)

(a)

(a)

(b)

• Top Figure:  The total time taken to 
clear the fault is approximately 
205µs.

Additional 60µs is available to clear the fault



10Ω L-L Fault:
• Conv-1 : Converter to bus#1 line-line

cable fault is activated at 0.02s
• Conv-2 : Normal operation, no fault

• Measured fault current: 6A

• At 0.02059s, the trip signal is generated 
based on the changes in the current 
direction at the bus side IED1 . 

• The fault time is measured as 590µs.

(b)

(c)

(a)



500Ω High Impedance L-G 
fault (F3 )
• The fault signal is activated at 0.02s.

• Differential current comparison is used,
and a flag is activated with a current
difference threshold of 50mA.

• The corresponding trip signal is generated 
after a preselected delay of 1ms. 

• The delay is provided to make sure
the high impedance fault is not a  
temporary fault.

(b)

(c)

(a)

(d)



Fault Simulation Analysis:



Conclusions
 Better control over converters output current / input current and the 

voltage during fault.

 Rate of change of converter fault current can be controlled.

 Fault Characterization

 Increases the total fault clearing time – Approximately extra 60µs.

 Therefore, more time to fault identification and characterization. 

 Communication delay can be accommodated.
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