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DC Microgrid - Overview

= Variety of sizes, technologies, and configurations - - AC grid
» Single bus, multi-bus, radial, meshed, zonal etc. : -

* Energy efficiency

= Reduced AC-DC conversion, generation sources
closer to loads.

= Economic benefits

= Simpler than AC

= Reactive power, skin effect, etc. not an issue in DC
pOWET.
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DC Microgrid Components
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DC Mlcrogrld Operatlng/ Control Pr1nc1ples
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Performance Parameters
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Types of Fault: Solar-PV based DC microgrid

DC Microgrid Fault
— gid Fauit |—

Short Circuit Fault Arc Fault
v v v v
Line-Line Fault | | Line-Ground Fault Series Arc Fault | | Parallel Arc Fault

= Low Impedance Faults
= High Impedance Faults
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Fault Locations
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Standardization

Needs standardization Standardized
Band Il (LVDC) Band | (ELVDC)
A A
r Y N\
1500V 400V 200V 120V 60V 30V oV

Comparable safety For <30V and in
Comparable safety margin margin as for AC for normal dry
Dangerous and could kill can be provided only with direct contact conditions for <60 V,
in case of direct contact 3-wire system with (IEC 60479) can be basic protection is
grounded middle point provided in 2-wire and not required for SELV
3-wire systems and PELV systems

Protection for safety: RCDs are not widely and commercially available for DC

Protection for equipment: detecting, locating and interrupting DC faults are challenging

* The IEC 23E/WG2 group, “DC distribution system and consequences for RCDg®

BE BOLD. Shape the Future.




Challenges of DC Protection

* No zero crossing

* Circuit breaker arcing

* Characterization of faults from disturbances/transients.
* Faster speed requirements

 Communication protocols

 Lack of guidelines and standards (IEEE P2030.10, [EEE 1547 .4,
IEC SEG4, IEEE PES IGCC DC@Home, NEC, REbus™, EMerge
Alliance, etc.)
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Protection Methods & Schemes

DC Microgrid Protection Methods

A 4 + + Y
Unit Protection Non-Unit Protection Single Ended Double Ended
Protect specific Follow a threshold || Local measurement || Sensing devises at
zones value to detectthe || of voltage and both ends &
various faults current communication
channels

DC Microgrid Fault Detection Schemes

o Magnitude of voltage

e Magnitude of current

e Impedance estimation method

e Power probe unit method

e Virtual Impedance method

 Differential current-based fault detection

e Transient-based fault protection

e Voltage derivative supervised current derivative protection

e Advanced fault detection techniques for PV arc, ground, and Line-Line faults




DC Protection Devices

DC Microgrid Protection Devices
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v v v v v
Fuse DC Circuit Breaker ¢ Protective Relay Solid State CB Hybrid CB
e Conventional e Molded Case e DC power Gate turn off Thyristor-
e Vacuum CBs relays thyristor (GTO) based DC
e Hybrid-solid/  Digital relays Emitter tum- hybrid CB
vacuum off ETO)
thyristor
Insulated gate : L
Arc Fault < bipolar High Switching
Interrupter transistor speed
e ArcFault (IGBT) Fully
Circuit Insulated gate controllable
Interrupter commutated High voltage
(AFI) thyristor (IGCT) blocking &
o Combination Coupled E:ﬁrr;?]tg
élrrcc uFi?L”t inductor SSCB iy
Interrupter SOt
(CAFI) conduction
loss
Arcing is small




System Under Consideration N

» Astandalone 4-bus DC microgrid -~/ “gaifen.
system. % E.ED
 Each bus consists of two parallel /¥ &
BN ~an vl

connected solar-PV boost

Centralized] 7,

converters, one bidirectional e
converter for energy storage, and 1d 7 \\:\\f
DC loads

* L-L(F,&F,)orL-G(F;&F )fault

created at converter-1 termmal and
Feeder.
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BUS#1- Converter Cable Fault (F,)

It Bus#2 + If, Bus#4
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pvl
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va2 ’::s Diode current
SZ vaz Lsz I I I I L
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PV < Vocz PpV; Time(s)
array#?2 Vhatt (c)
I—| Ry, Lot * Converter-1’s contribution to the fault
__|__\|,Bl Pey > current can be divided into two
Lot o components:
Battery o~ (i) The fault current component from
Bank I—vi— the DC power source (PV), and

(ii) The current from the DC bus
capacitor.



Proposed Droop Algorithm -Objectives

= Power sharing

= Maximum power point tracking
(MPPT)

* Energy management

" Protection: Control the reference
voltage of each converter by using an
adaptive virtual Resistance, calle

Rd roop*
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Control Algorithm
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Converter-1 output voltage
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10Q L-L Fault: <10®

e Conv-1 : Converter to bus#l line-line
cable fault is activated at 0.02s
e Conv-2: Normal operation, no fault “0.0195 0.02 (a)  ooms 0021
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500Q High Impedancel-G &+ -
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T4l
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Fault Simulation Analysis:

Fault/Load Change Fault Clearing % (A/s)
Time (s) (measured)

Low impedance fault 20548 -

(without % and droop)

Low impedance fault (1€2) 265 115 4x10° Als

(with Z—; and droop)

Low impedance fault (1052) 590 s 3x10° Als

(with g—z and current direction)

High impedance fault (500 ¢2) 1 ms 1.5times10% Als

(with % and current differential) (pre-selected)

Small load change (3A to 4A) - 1x10% Als

Large load change (3A to 8 A) - 7x10% Als
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Conclusions

= Better control over converters output current / input current and the
voltage during fault.

= Rate of change of converter fault current can be controlled.

= Fault Characterization

" |ncreases the total fault clearing time — Approximately extra 60us.
= Therefore, more time to fault identification and characterization.

= Communication delay can be accommodated.
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