Open DC Grid Project

2020 July

James Gula - jlgula@papugh.com Martin Jäger – martin@libre.solar Chris Moller – chris.moller@evonet.com

- GOGLA Interop Presentation Garick Lee
- ODG 12V Link Proposal
- Communications
- Related Standards / Industry Developments
- Next Meeting / Feedback

12V Link - Objective

- * Enable marketplace focus on OEMs, retail someday
 - * 12V Appliances enable low-cost PAYGO lighting as a service
 - * Power sources SHSs, DC Grids, AC power adapters, combined

ODG 12V Link Proposal

- * Low cost connections with expandability
- * Compatible with most 12V devices and sources
- * Lower cost but more power than USB
- * Minimizes barrel connector compatibility issues
- * Optional communications for remote management
- * Multiple sources permitted
- * Goof resistant with informal wiring
- * Compatible with existing AC power adapters
- Consistent with ISO 16750 (12V auto electrical)

3-terminal barrel connector CUI PJ-096H or equivalent ~\$.35

³⁻terminal plug Philmore 274 or equivalent

12V Link – Barrel Connector Compatibility

HP Laptop Power Supply

- * Compatibility issue: laptop power adapters
- * Solution:
 - * Loads: 10V to 20V permits use of power adapters
 - * Sources: 10.5 to 15V compatible with existing 12V devices

12V Link – Wiring Flexibility

* 4 port types

- * Load female socket recommended, male plug optional
- Source female socket only
- * Bidirectional female socket only
- * AC power adapter male plug and cord
- * Passive (no electronics) extension cords, port expanders
 - * Similar to AC
- * Supports bidirectional ports (battery)
- * Supports multiple sources per bus (grid)

12V Link - Topologies

🔥 Rev 1

12V Link – Power Saving Modes

- * Objective save battery from overdraw
- * Sleep Mode 9V 10V
 - Primary functions off
 - * Communications (if supported) still active
 - * Max current 10 mA / node
- * Disconnect Mode < 9V</p>
 - * All functions off
 - * Max current 100 uA / node

12V Link – Tests and Parameters Most based on ISO 16750 / ISO 7637-2

- * Overvoltage protection
- * Overcurrent protection
- * Reverse polarity
- * Dropout (100 msec)
- * Noise immunity
- * Slow voltage rise/fall
- Transient immunity TBD
- * Open circuit
- Droop control
- Constant power load stability

Symbol	Value	Description
V _{max_s}	15 V	maximum source voltage
V _{max_I}	20 V	maximum voltage for loads operating normally
V _{max_a}	20 V	maximum AC adapter voltage
V _{ovp}	25 V	minimum overvoltage protection
V _{ovs}	25 V	source disconnect overshoot
V _{cond}	25 V	load disconnect overshoot
V _{min_s}	10.5 V	minimum source voltage
V _{min_l}	10 V	minimum voltage for loads operating normally
V _{min_c}	9 V	minimum voltage for communications circuits
V _{reverse}	-25 V	minimum reverse protected voltage
V _{AC}	1 V P-P	minimum AC noise protection
V _{dropout}	4.5 V	maximum voltage during drop-out protection test
I _{max}	8 A	maximum current through a connector

12V Link – Labeling and Indicator

Green

Amber

Load Indicator

Red

* Label

- * ODG Symbol
- * Port type symbol
- * Power output or load
- * Indicator light (multicolor LED)
 - * Used on all ports
 - * Explains conditions
 - * Patterns for color-blind?
 - * Power saving timeout
 - * Invert pattern at 1 minute?

Color	Blink Dots	Description
Green	1	load receiving normal power
Green	2	load receiving normal power but without communications
Amber	1	load or source voltage below $V_{\mbox{min_l}}$ (sleep)
Amber	2	load with insufficient priority for power
Amber	3	load or source PAYG disabled
Red	1	source over-current
Red	2	reverse polarity
Red	3	overvoltage or device malfunction
blue	1	source suppling normal power
blue	2	source suppling normal power but without communications

Source/BiDi Indicator

12V Link – Current Surges

* Cold start

- * Recommend [require?] random delay on start
- * Staged startup for communicating loads
- * TBD for capacitor charging
- * Surges TBD
 - * Permit brief surges?
 - * Require soft start?

12V Link – Comm Goals / Non-Goals

* Goals

- * Very low cost (<< \$1 / port)</p>
- * Simple wiring w/o special cables
- * Automatic configuration plug and play
- * Very low power when not in use
- * Simple protocols for <u>very</u> memory constrained MCUs
- * Operation within homes and modest structures
- * Non-Goals
 - * High data rates: 1 kbps OK
 - * Direct internet access: proxy / bridges OK
 - * Encryption / security: optional, not required
 - * Long distances transmissions: 40 m OK

12V Link – Comm Implemetation ODGTalk

- * Physical layer based on LIN bus
 - * 40 m over regular wires (twisted pair not required)
 - * 12V swing for good noise immunity
 - * 1 20 kbps data rate
 - Very low cost transceivers (\$.35) many sources
 - Typically immune to +/- 45V spikes
 - * Transceiver sleep mode
- * Link layer different
 - Auto address assignment LIN static or extra wires
 - Auto data rate selection LIN static
 - Peer to peer messages LIN master / slave
 - * Uses UART "multiprocessor mode" to minimize power
 - * Any node can be bus manager (pull-up, address registration)

12V Link – Comm Details

Figure 5. LIN® Frame Header Explanation

Figures from: TI SLLA383

12V Link Example – Where does the Dimmer Go?

12V Link Example – Smart Light

🔥 Rev 1

Communications - Applications

- * Grid management
 - * Route energy / power
 - * Isolate faults
 - * Grid configuration and monitoring
- * Bus management
 - * Allocate power from sources
 - * Allocate power to loads
 - * Sequence power on startup
- * Device management
 - * Device status fridge temp
 - Device functions dim a light
 - * PAYGO pass token

Communications - Constraints

* Cost

- * Common use cases very price sensitive
- * Ease of use
 - * Most functions must be plug and play
 - * Minimal training
 - * Tech support may not be available
- * Security as needed
 - * Probably not needed for wired comm in home
 - * Probably is needed between customers / wireless
- * Interoperability as needed
 - * Many use cases have no Internet access
 - * Businesses may need remote access to minimize travel
- * Stability
 - * Must preserve user investments backwards compatibility
 - * Potentially no opportunity for firmware upgrades
- * Ease of implementation
 - * Use existing open source code whenever possible
 - * Easy to understand paradigms
 - * Offer reference code
- * Free Access
 - * No patent licenses
 - * Minimal dependence on purchased standards

Communications - Layers

- * Multiple physical layers
 - * ODGTalk for low cost
 - * G3 PLC for long distance
 - * CAN for performance
 - * USB-PD, POE etc
- * Routing only when needed
- * Security only when needed
- * Favor REST paradigm
 - * CoAP with extensions

- Huge overhead, difficult parsing
- Requires full Internet devices

- Efficient Web
- Optimized IP access

Communications – Presentation and Application

- * Existing Models
 - * Modbus etc predefined registers with vendor extensions
 - * ThingSet JSON tree with CBOR, CoAP subset
 - * Open Connectivity Foundation JSON core
 - * IEEE P2030.5 (SEP 2.0) XML over CoAP
 - * ISO etc etc
- Requirements (from ThingSet)
 - * Flexible independent of lower layer protocols
 - * Compatible easy to integrate with existing CoAP etc
 - * Human readable text option
 - * Compact footprint code and message size
 - * Schema-less and self explaining
 - * Stateless
- * Consistent mapping whenever practical

Related Standards / Industry Developments

* P2030.10

- * Still in review by PE/T&D
- * ODG has add unmanaged grid appendix to subsume P2030.10
- * P2030.10.1
 - * No recent activity
 - * Meeting planned for Aug 8
- * GOGLA Interop activities
- * OpenPAYGO Token / OpenPAYGO Link

Next Meeting / Feedback

* Next Meeting

- * 11 August 2020 1400 UTC
- * FreeConferenceCall.com meeting ID: jlgula
- * Sharing Portals
 - * Web site: <u>https://open-dc-grid.org/</u>
 - * GitHub: <u>https://github.com/open-dc-grid</u>
- * Feedback?

