Open DC Grid Project

James Gula - jlgula@pw
& Martin Jager — martin@libre.solar A

Chris Moller - chris.moller@evonet.com

% Communications Overview
% 10T Stack — OFC and the Angaza Nexus Channel

* Chad Norvell mailto:chad@angaza.com

% Open PAYGO Link - Solaris
** Daniel Nedosseikine daniel(@solarisoffgrid.com

“* ODG Simulation Platform
“* Related Standards / Industry Developments
“* Next Meeting [Feedback

J\, Revg August 112020

mailto:chad@angaza.com
mailto:daniel@solarisoffgrid.com

Communications - Applications

\

* Grid management

* Route energy [power

* |solate faults

* Grid configuration and monitoring
* Bus management

* Allocate power from sources

* Allocate power to loads

* Sequence power on startup
* Device management

* Device status - fridge temp

* Device functions — dim a light

* PAYGO - pass token

J\, Revg August 112020

& Rev 4

Communications - Constraints

%k

Common use cases very price sensitive
Ease of use
* Most functions must be plug and play
Minimal training
* Tech support may not be available
Security — as needed
* Probably not needed for wired comm in home
* Probably is needed between customers [wireless
Interoperability — as needed
* Many use cases have no Internet access
* Businesses may need remote access to minimize travel
Stability
* Must preserve user investments — backwards compatibility
* Potentially no opportunity for firmware upgrades
Ease of implementation
* Use existing open source code whenever possible
* Easy to understand paradigms
* Offer reference code
Free Access
* No patent licenses
* Minimal dependence on purchased standards

August 112020

/_\X Rev 4

Communications - Layers

Multiple physical layers

* ODGTalk for low cost

* G3 PLC for long distance

* CAN for performance

+ USB-PD, POE etc
* Routing only when needed
« Security only when needed
* Favor REST paradigm

* COAP with extensions

o

Web

Hundreds / thousands of bytes

XML

HTTP

TLS

TCP

IPv6

¢ Inefficient content encoding
* Huge overhead, difficult parsing

¢ Requires full Internet devices

Internet of Things
Tens of bytes

Web Objects

CoAP

DTLS

6LoWPAN
» Efficient objects

« Efficient Web

* Optimized IP access

August 112020

Communications — Presentation and Application

\

* Existing Models

Modbus etc - predefined registers with vendor extensions
ThingSet — JSON tree with CBOR, CoAP subset

Open Connectivity Foundation — JSON core

|IEEE P2030.5 (SEP 2.0) - XML over CoAP

ISO etc etc

* Requirements (from ThingSet)

Flexible — independent of lower layer protocols
Compatible — easy to integrate with existing — COAP etc
Human readable - text option

Compact footprint — code and message size
Schema-less and self explaining

Stateless

* Consistent mapping whenever practical

CE S S

* K% X X X ¥

J\, Revg August 112020

Angaza Nexus Channel [Core

L ——

See Angaza Presentation...

https://open-dc-grid.org/MeetingMaterials/20200811Angaza.pdf

Solaris OpenPAYGO / Link

S —

See Solaris Presentation...

https://open-dc-grid.org/MeetingMaterials/20200811Solaris.pdf

ODG Simulation Platform

Overview

\

* What is being simulated: connected devices
* Communications message traffic
* Power flow with energy storage
* Why
* Easy debugging with repeatable test environment
* Smooth transition from rich platform to constrained
* Test harness: simulator can interact with live devices

J\, Revg August 112020

& Rev 4

ODG Simultation Platform

Logical Architecture

\

Simulates entire Grid: [{ Device}, {Bus}]

Device: [{ Task }, { Connection}, { Port }]

Task: { ConnectionPoint }, Port is subclass of task
Connection: [[Task, CP], [Task, CP]]

Bus: { [Device, Port]}

Note: energy and power are properties of devices, ports, buses

August 112020

‘&l Rev 4

ODG Simulation Platform

Execution Architecture
\

* Local - all devices in same app
* Synchronous: grid invokes all tasks via clock tick
* Async: tasks run in separate threads in real time
« Distributed (async only) — devices in separate apps, PCs, IOTs
* Communicate via internet messages (UDP)
* Potential bridge to other buses: LIN, CAN
* Programming platform choices:
* JVM —tasks, simulator in Java, Scala, sync or async
* Native — tasks, simulator in C, C++
* Sync or async: Static link tasks to simulator app
* Async: tasks running in Zephyr native POSIX
* Async: STM32 etc in QEMU/Zephr
* Async: live devices via internet / bridge
* Browser [javascript (via Scala to Javascript translator)

August 112020

& Rev 4

ODG Simulation Platform

“Operating System”’
\

+ Execution environment for tasks
+ Basic functions

Allocate and send messages to other tasks (or bus ports)
* |nitiate [cancel timers

%k

Basic info: time, configuration, devicelD etc

* Easily emulated on many platforms

%k

* * X *

Bare “iron” eg STM8

Zephyr

Java Virtual Machine (JVM)
Posix [native

Browser [Javascript / Node.js

August 112020

& Rev 4

ODG Simulation Platform

Key concept: task
“

* What is a task (aka actor)?
* Thread-safe event queue
* Single threaded dispatch method
* State structure
* To thread or not to thread...
* Synchronous - single thread runs all tasks in entire grid
* =>tasks are just state machines - no sleeps
* Async - tasks with threads (even multiple) are OK
* Java COAP etc can be packaged as Task
* How does it sleep?
* Task is runnable if anything in its event queue
« Dispatches in a loop until queue empty (limits for errors)
* Potential events: net messages, timer events

August 112020

ODG Simulation Platform

Blinky Grid Simulation

* Structure statically defined
* As code for testing
* As .json file for simulation
* Run Options:
Sync: grid.runTicks(n)
Async: grid.run()
* LIN [UART Simulation
* Sync: internal messages
* Async: Multicast UDP

J\, Revg August 112020

ODG Simulation Platform

Example: net blinky client task

enum blinky_state{ Note: assumes Co

1 WAIT_FOR_TIMER,

16 WAIT_FOR_GET, . . . -
17 WAIT_FOR_SET, } void bllvky_dlspatch(event_t *event, blinky_state_t xstate) {
T FAILED | bool light_on = false;
19 3 16 system_t xsystem = state->system
- ! switch(event->type) {
o w case TIMER:
21 struct { 49 (*(system—>send)) (state, my_port, blinky_format_get(state->message))ﬂ
22 event_t #next; state = WAIT_FOR_GET;
event_type type; 51 break;

24 union { case MESSAGE:
2 net_message_t *message; 53 net_message_t *message = event->data.message;
26 const char xtime_cookie; if (message_parse_response_code(message) == FAILED) {
2 } data; state->state = FAILED;

} event_t return;
2 }

struct { switch(state.state) {

case WAIT_FOR_GET:
light_on = blink_parse_get_value(message);
(*(system->send)) (state, my_port, blinky_format_put(message, !light_on));
state->state = WAIT_FOR_PUT;

31 event_queue_t event_queue; =k
32 system_t system; o
3 blinky_state state;
34 net_message_t *message;

25} blinky_state_t; return;

‘ = = 4 case WAIT_FOR_PUT:

o 65 (x(system—>create_timer)) (state, time_add_usec((x(system->time)()), TIMER_DELAY_USEC), null))

3 void blinky_init(blinky_state_t kstate, system_t *system) { 66 state->state = WAIT_FOR_TIMER;
state->state = WAIT_FOR_TIMER; 6 return;

39 state->system = system; 68 }

4 state->message = (x(system->allocate_message)()) 69 }

11 (*(system—>create_timer))(state, (*k(system—>time)()), null)) o 1}

12}

August 112020

& Rev 4

ODG Simulation Platform

Example: net blinky server task

Implementation in Scala \

case class BlinkyServerState(override val system: System, var lightOn: Boolean = false) extends TaskState(system)

case object BlinkyServerTask extends Task(name= "BlinkServer") {
override def initialize(system: System): TaskState = BlinkyServerState(system)
override def dispatch(event: TaskEvent, state: TaskState): Unit = dispatch(event, state.asInstanceOf[BlinkyServerState])
def dispatch(event: TaskEvent, state: BlinkyServerState): Unit = event match {
case TaskEvent.Message(_, buffer) if parseOperation(buffer) == Operation.Get => sendResponse(state, buffer)
case TaskEvent.Message(_, buffer) if parseOperation(buffer) == Operation.Put =>
state.lightOn = parseValve(buffer)
sendResponse(state, buffer)
case e: TaskEvent => super.dispatch(event, state)

b

def parseOperation(buffer: NetBuffer): Operation = Operation.parse(buffer.data(®))
def parseValue(buffer: NetBuffer): Boolean = buffer.data(l) != @
def sendResponse(state: BlinkyServerState, buffer: NetBuffer): Unit = {
buffer.reset()
buffer.putByte(CoAPResponse.0K.value)
buffer.putByte(if (state.lightOn) 1 else 8)
state.system.send(task = this, this.connectionPoints.head, buffer)

J\, Revg August 112020

ODG Simulation Platform
Hardware Lab

Arduino UNO
lick SHIELD

84zS5118—0I 0NN

zBs BB
: ;
gz &3 n

DIGITAL (Put1”) &

.2 ==eLEGOD
UNO R3

8nucleo

1)
1
\
com/stm
ssaa
-
YYan

= N

c18

www elegoo.com

www.st.

e e e e S S e S e S S S S e e S

Related Standards [Industry Developments

‘\

* P2030.10
* Ballot in progress

* P2030.10.1
* Draft 3 released
* No functional differences
« Significant editing and clarification
* GOGLA Interop activities
* ODG to present in September 372 meeting
* QOpenPAYGO Link
* Angaza Nexus Channel / Nexus Channel Core
* QOpen Connectivity Foundation [loTivity

J\, Revg August 112020

https://standards.ieee.org/project/2030_10.html
https://standards.ieee.org/project/2030_10_1.html
https://www.gogla.org/
https://www.paygops.com/openpaygolink
https://angaza.github.io/nexus/channel
https://openconnectivity.org/
https://iotivity.org/

Next Meeting [Feedback

‘\

* Next Meeting
* 8 September 2020 - 1400 UTC

* Zoom — Meeting ID 87518284403
* Sharing Portals

* Web site: https://open-dc-grid.org/

GitHub: https://github.com/open-dc-grid
* Feedback?

J\, Revg August 112020

https://us02web.zoom.us/j/87518284403
https://open-dc-grid.org/
https://github.com/open-dc-grid

