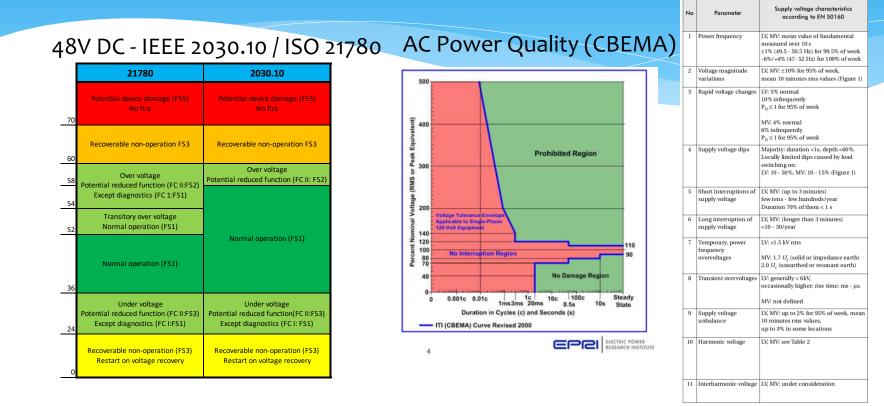
Open DC Grid Project

2021 March

James Gula - jlgula@papugh.com Martin Jäger – martin@libre.solar Chris Moller – chris.moller@evonet.com

ODG Grid Architecture


Related Standards / Industry Developments

Conflicting Goals of Power Management

- Deliver expected power at minimal cost
 - * For given expected reliability => minimize consumer cost
 - * Need to consider levelized cost: fuel, capex, maintenance etc.
 - * Need realistic bounds mitigated by the system
- * Deliver expected power reliability
 - Meet customer expectations for predefined demand
 - * Better reliability typically means higher costs
 - * Possibly quantified as cost of failure more often satisfaction
 - Defined in terms of power quality standards

Power Quality Standards

Duration (up to)	FC 1: Comm/Diag	FC II: Others	Minimum voltage
100 microseconds	FS 1	FS 1	0 V
>100 microseconds	FS 3	FS 3	0 V
120 seconds	FS 1	FS 3	31 V
10 seconds	FS 1	FS 3	24 V

FC I: Diagnostic functions, FC II Normal functions FS1: normal operation, FS3: degraded / off

Rev 2

AC Power Quality – EN 50160

Layers of Power Management

- * Fast transients (\approx < 10 ms)
 - * Rapidly changing loads eg. Computers
 - * Rapidly changing sources PV?
- * Human reaction time power allocations (\approx 100 ms)
 - * Human initiated events turning on a light
 - Motor powered devices refrigerator
- Energy storage migration (minutes hours)
 - * Moving energy in response to human activities
 - * Ensure power availability from intermittent sources / loads
- Forecasted energy / price changes (hours to days)
 - * Time of use pricing
 - * Night / day changes for PV, weather events
 - Predicted wind velocities for wind sources

Architecture: Mechanism versus Policy

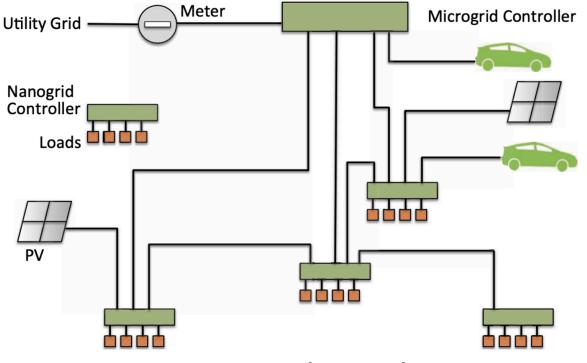
* Mechanism – tools to implement policy +

- * Analog
 - * Observed voltages, currents
 - * Transfer switches, circuit breaker etc.
- * Digital
 - * Communications protocols
 - * Power electronics: DC-DC, DC-AC, AC-AC
- * Typically a combination of analog & digital mechanisms
- * Includes measurement, reporting, configuration etc.
- * Policy configuration / algorithm that optimizes goals
 - * Battery charge/discharge setpoints
 - * External power transfers as function of time, price, forecasts etc.
 - * Local control and/or cloud control

ODG Grid Architecture

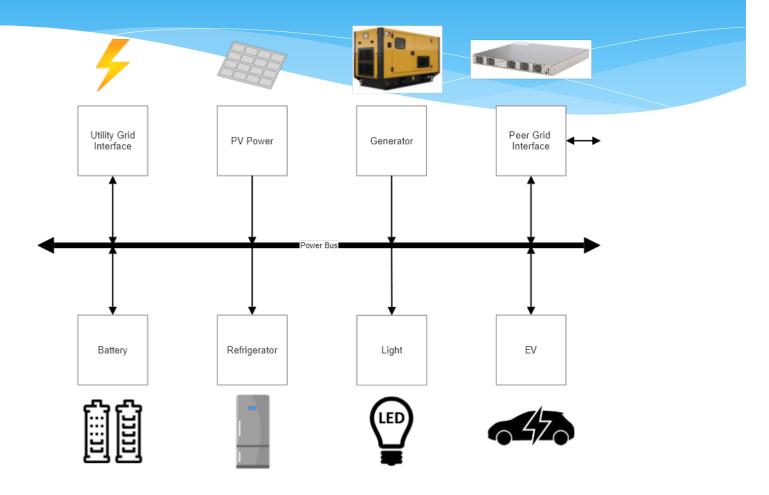
- * Goals / features similar to LPD:
 - * Microgrids should scale from very small to very large
 - * Microgrids should support devices from multiple vendors
 - * Microgrid architecture is independent of physical layer AC/DC, voltage etc
 - * Hierarchies of microgrids are grid of the future similar to Internet
 - * Digitally managed power
- Goals / features in different from LPD:
 - Microgrids do not need batteries or any other storage
 - Bus architecture is default
 - * Link (P to P) is just a bus with only 2 devices
 - Supports rapid (< 1 sec) power allocation
 - Supports non-communicating loads
 - * Supports most existing microgrids as a software upgrade

Practicality Goals for Microgrid

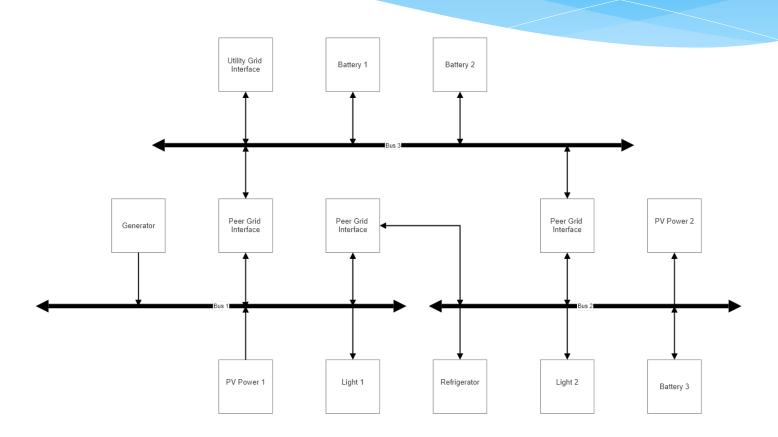

- * Reliability will it last for 50 years?
- * Minimal surprises does it behave as user expects?
- * Simple installation minimal tools, expertise
- * Safe no fires, no electrocutions

System	Voltage	Date Install	Install Complexity	Reliability
AC Power	110/220 AC	1972	Medium	Good until arc-fault CBs
POTS (plain old telephone)	48 DC/90 AC	1972	Low	Medium - noise problems, now largely unused
Cable TV (Coax)	RF	1972	Low	Medium - multiple upgrades
Doorbell, gate control etc	24 AC	1972	Low	Good
Wired alarm	24 AC	1972	Low, Medium	Medium - mostly sensor failures
Ethernet	RF, some POE	1996	Medium	Medium - multiple upgrades
USB, USB-PD	RF, 5-20 DC	1996	M-High	Medium - drivers, power uncertainty, connectors
PV Power	600 DC	2010	Medium	Good
HDMI	RF	2020	Medium	Poor - compatibility issues, dropouts

Wiring systems in US house


Network Style Microgrid

From Nordman et al.



Bus Style Microgrid

Rev 2

Mixed Bus/Network Microgrid

March 9, 2021

Microgrid Device

- * One or more digital power ports (power + comm)
- * Port power can be unidirectional or bidirectional

Bus Protocol Overview

- * Device connects to bus via a port
 - Devices can have multiple ports
- * Each port has a role: manager or worker
 - * Ports can change roles
- * Bus has one manager at a time
 - * Manager role can move to a different port/device (failsafe)
- * Sources should be capable of assuming the manager role
 - * => Any load can attach to any source and create a 2-port microgrid
- Manager controls power on bus sources and loads
- * Bus can have static state replicated on all sources identifying dumb loads
 - * Static state is manually configured by human installer
 - * Dumb loads are just a fixed, static load known to all sources

Battery Issues

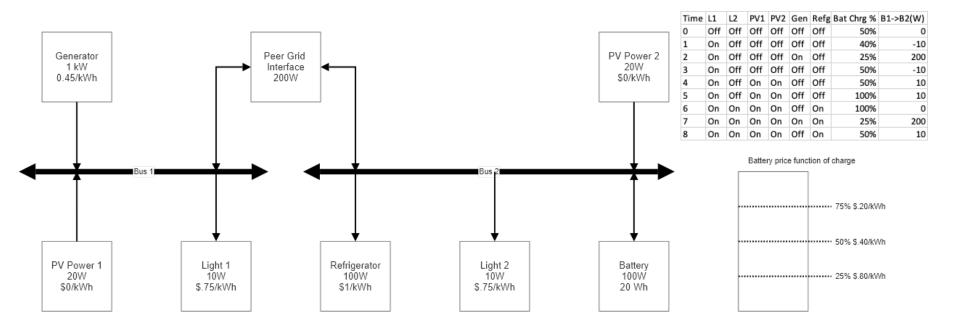
- * Goal: multiple batteries, different types on one bus
- * Goal: only switches required, voltage change not required
 - Full DC-DC conversion adds significant costs inductors, caps, cooling
- Issue: different batteries have different charge voltages
 - * Bus manager must set bus voltage to appropriate charge voltage
- * Issue: controlling charge current PWM?
 - * Must keep bus noise below required limits caps
- Issue: allocating discharge current / droop
 - * Must allocate current from multiple sources droop curve
 - Must keep discharge current within battery limits
- Potential compromises
 - * All batteries same type
 - Require DC-DC conversion with mixed battery types

ODG Messages

* ODG Messages

- * Register (request / ack)
- * Request (worker to manager)
 - * Allocate response (idempotent) manager to worker
- Renegotiate (manager to worker)
- * Keep-alive (manager broadcast)
- * Framed using CoAP
 - * Optionally carried over layer 2 unrouted link layer
 - * Optionally carried over layer 3 normal UDP

Device Phases


- Registration
 - * All ports attempt to register as worker to an existing manager
 - If worker registration fails, sources attempt to assume manager role
- Normal operation
 - * Workers (and manager) can potentially source or consume power
 - * Workers offer to sell and/or buy power at a price
 - * Manager grants request at a specific power level
 - Manager can force renegotiation broadcast or per port
- Recovery (if manager fails)
 - Manager must periodically broadcast keep-alive
 - * All ports restart registration on timeout

Power Request/Grant - TBD

- * Power request message includes both sell and buy
 - * Sell price (\$/Wh), power level (W),
 - * Buy price (\$/Wh), power level (W)
- * Power grant response
 - * Grant role (source, load), power level (W)

Protocol Example

🛕 🛛 Rev 2

Additional Protocols

* Configuration, monitoring and control

- * Security?
- * Internet routing?
- * OCF? ThingSet?
- * Energy scheduling?
- * PAYGO
 - * Angaza Nexus (OCF)?
- * Utility grid interface
 - * IEEE 2030.5?

Related Standards / Industry Developments

- * <u>P2030.10</u>
 - Recirculation ballot (D11) in progress please vote!
- * <u>LFEnergy</u>
 - * Architecture sprint in progress led by Bruce Nordman
 - * Spring summit Apr 14 Jim/Martin presentation on ODG, Zephyr
- * P2030.10.1
 - Getting ready for ballot no recent activity
- * <u>GOGLA</u> Interop activities ?
- * OpenPAYGO Link ?
- * Angaza Nexus Channel / Nexus Channel Core ?
- * Open Connectivity Foundation / IoTivity ?

Next Meeting / Feedback

* Next Meeting

- * 13 April 2021 <u>1400 UTC</u>
- * Zoom Meeting ID 87518284403 password: opendcgrid
- * Sharing Portals
 - * Web site: <u>https://open-dc-grid.org/</u>
 - * GitHub: https://github.com/open-dc-grid

